Pretreatment of tumor cells with ATRA for 36 h and wash and then treatment for an additional 36 h with 10058-F4 research buy zoledronic acid resulted in synergistic cytotoxicity in OVCAR-3 and MDAH-2774 cells. Also, pretreatment of tumor cells with zoledronic acid for 36 h and wash and then treatment for an additional 36 h with ATRA resulted in synergistic cytotoxicity in OVCAR-3 and MDAH-2774 cells (data not shown). So,
synergistic cytotoxicity was observed no matter which agent applied first in both cells. Combination treatment induced apoptosis in a synergistic manner a) DNA Fragmentation To examine the induction of apoptosis in response to ATRA or zoledronic acid and combination of both in ovarian cancer cells, we incubated these cells in the presence of the agents alone or in combination of both for 72 hours and then we quantified selleck the levels of mono-oligo
ALK inhibitor nucleosome fragments by Cell Death Detection Kit (Roche Applied Science, Mannheim, Germany). Our results clearly showed that both ATRA and zoledronic acid alone induced apoptosis in a dose-dependent manner but the exposure to combination of both agents resulted in synergistic induction of apoptosis by DNA fragmentation analysis. As shown in figure 4, there were 2.7- or 1.8- fold increases in DNA fragmentation in 80 nM ATRA or 5 μM zoledronic acid exposed OVCAR-3 cells, respectively, as compared to untreated controls, while the combination of both resulted in 7 fold increase in DNA fragmentation (p < 0.05). In MDAH-2774 cells, there were 2.0- or 1.9- fold increase in DNA fragmentation in 40 nM ATRA or 5 μM zoledronic acid exposed MDAH-2774 cells respectively, as compared to untreated controls, while the combination of both resulted in 6.2 fold increase in Tacrolimus (FK506) DNA fragmentation (figure 4) (p < 0.05). These doses were chosen to put in the figure, since they represent the most demonstrative synergistic dose-dependent effect of the combination. Figure 4 Apoptotic effects of ATRA and zoledronic acid (ZA) alone or in combination in OVCAR-3 and
MDAH-2774 cells through DNA fragmentation analyses (p < 0.05). b) Caspase 3/7 enzyme activity Caspases are commonly referred to as hangmans of apoptosis. The activation of caspases is an evidence of apoptosis in cells. In order to confirm the apoptotic effects of combination treatment in OVCAR-3 cells, we examined the changes in caspase 3/7 enzyme activity. The results revealed that there was a dose dependent increase in caspase 3/7 enzyme activity in ATRA or zoledronic acid in OVCAR-3 cells (data not shown). Specifically, OVCAR-3 cells exposed to 80 nM ATRA or 5 μM zoledronic acid showed 2.8- or 1.7- fold increases in caspase 3/7 enzyme activity, respectively, as compared to untreated controls, while their combination resulted in 6.6- fold increases in caspase-3/7 enzyme activity (figure 5) (p < 0.05). MDAH-2774 cells exposed to 40 nM ATRA or 5 μM zoledronic acid showed 3.1- or 2.