9 between both datasets To identify highly expressed transcripts

9 between both datasets. To identify highly expressed transcripts and their putative functions, we selected the 100 most abundant transcripts based on their RPKM values in the CP and CS datasets, and investigated the biological processes in which those transcripts might be involved. Although many transcripts (15

in CP and 23 in CS) could not be assigned to known biological processes, most (52 in CP and 51 in CS) were involved in stress response and protein metabolism, including pathogenesis-related proteins, antioxidant enzymes, heat-shock proteins, and metallothionein-like proteins in the stress response category, and translation- and protein Natural Product Library high throughput degradation-related proteins in the protein metabolism category (Fig. 4). After these, transcripts related to lipid metabolism, such as fatty acid desaturases and lipid transfer proteins, were most abundant. Ginsenosides www.selleckchem.com/products/Bortezomib.html are the most important phytochemicals in ginseng and are known to be synthesized through the mevalonic acid pathway [24]. We focused on downstream enzymes from farnesyl diphosphate synthase (FDS) to UDP-glycosyltransferase (UGT) in the mevalonic acid pathway (Fig. 5A). In previous studies, 17 genes for the seven downstream enzymes (FDS to protopanaxatriol synthase) have been reported in P. ginseng [25], [26], [27], [28], [29], [30], [31] and [32] ( Table 2). We used amino acid sequences of the 17 genes as queries for TBLASTN searches against transcript

datasets of the CP cultivar, resulting in the identification of 10 genes encoding the seven downstream enzymes. Of them, a single transcript for FDS was identified with 15 isoforms in the CP dataset ( Table 2). Squalene synthase, dammarenediol synthase, PDK4 β-amyrin synthase,

protopanaxadiol synthase (CYP716A47), and protopanaxatriol synthase (CYP716A53v2) were also identified to be encoded by single transcripts with several isoforms. Exceptionally, four transcripts were identified for squalene epoxidase. Although we identified the isoforms using a reliable algorithm (Trinity assembler), the forthcoming P. ginseng genome sequence will provide more solid information about them. Based on our analysis, we considered that the isoforms are likely to originate from a single gene. To investigate the expression levels of the transcripts, the RPKM values of isoforms from the same transcripts were averaged and compared (Fig. 5B). All showed similar expression levels between CP and CS cultivars, with transcripts encoding cytochrome P450 for protopanaxatriol synthase showing the highest expression in both cultivars. Three UGT proteins, SvUGT74M1, MtUGT73K1, and MtUGT71G1, were used as queries for TBLASTN searches, because UGT genes for ginsenoside biosynthesis had not been identified in P. ginseng. Three UGT proteins were reported to function in triterpene saponin biosynthesis in Medicago truncatula and Saponaria vaccaria [33] and [34].

The results

The results click here obtained suggest that colour transition in PCDA/DMPC vesicles, from blue to red, can be used for the development of sensors to be used in the food industry to monitor temperature variations at different stages of processing. Another important stimulus that is known to cause colour change in PDAs is the pH variation. The spectrophotometric

results obtained by the addition of 0.1 M NaOH to the PCDA/DMPC aqueous vesicle suspension (initial pH 6.2 and pH values of 7.3, 8.2, 8.9, 9.1, 10.0, 11.0 and 12.2 obtained after NaOH addition) are shown in Fig. 3. The NaOH titration provided colour transition from blue (maximum absorption 640 nm) to red (maximum absorption 540 nm) in vesicles at pH above 9.0 and the formation of intermediate chromic GW-572016 order phase was not observed. The colorimetric response (CR) values were 26%, 44%, 38% and 33% at pH 9.1, 10.0, 11.0 and 12.2, respectively. Colorimetric response values ⩾15% are visible to the naked eye (Boullanger et al., 2008). On the other hand, the addition of 0.1 M HCl (to give pH values of 5.4, 5.0, 3.5, 3.0 and 2.5) and acidification of the vesicles at pH values lower than 4.0 provided no change in the colorimetric properties of vesicles (there was no change in colour), but led to the formation of aggregates of vesicles and turbidity in the medium, which prevented

spectrophotometric measurements. The results are similar to those presented by Kew and Hall (2006), for 10,12-tricosadienoic acid vesicles. These authors observed irreversible colour change from blue to red when pH was increased by adding NaOH and the formation of precipitate at pH below 4.0. They also observed the formation of an isosbestic point, indicating that the colour change from red to blue occurred without formation of intermediate colour. The same can Tolmetin be seen in Fig. 3 for the PCDA/DMPC vesicles studied except at pH 12.2. In this case the pH value promoted the colour change

from blue to red without formation of intermediary colour and also promoted changes in the vesicle structure that caused decrease in red colour intensity, with absorbance values of approximately half those of the others. In these studies, the effects that lead to colour change due to variation in pH were not evaluated, but some authors have suggested mechanisms to elucidate such chromatic transitions. Song, Cheng, Kopta, and Stevens (2001), suggested that colour change from blue to red is caused by increased electrostatic repulsion among the head groups, due to elevation of pH caused by adding NaOH. Kew and Hall (2006) proposed that the change in colour due to pH is related to Coulomb repulsion among head groups, which can cause conformational disturbances in PDA structure. Boullanger et al.

RAW264 7 cells (5 × 104 cells/mL) were incubated with or without

RAW264.7 cells (5 × 104 cells/mL) were incubated with or without RGSF (2.5 μg/mL, 5 μg/mL, 10 μg/mL, and 20 μg/mL) for 10 min and irradiated (10 Gy) using a blood γ irradiator and incubated at 37 °C for 24 h. Cells were then washed twice with PBS. Cells were incubated with or without selleck screening library RGSF (2.5 μg/mL, 5 μg/mL, 10 μg/mL, and 20 μg/mL) for 10 min and stimulated

with LPS (0.1 μg/mL) for 24 h. Cytokine levels in the culture supernatant were evaluated using an IL-1β ELISA kit following the manufacturer’s protocol (BD, Franklin Lakes, CA, USA). RAW264.7 cells (2 × 106 cells/mL) were transfected with 10 μg plasmid containing NF-κB-Luc, AP-1-Luc, and TK-renilla-Luc using electrophoresis according to the manufacturer’s instructions (Neon Transfection System; Invitrogen, Carlsbad, CA, USA). The cells were used for experiments 24 h after transfection. Luciferase assay was performed using the Luciferase Assay System (Promega, Madison, WI, USA)

as reported previously [14]. After the indicated treatment in RAW264.7 cells was terminated, total proteins were prepared using Pro-prep lysis buffer (iNtRON, Seoul, Korea) according to the manufacturer’s instructions. Concentrations CB-839 nmr of the extracted proteins were determined using a Bradford protein assay kit (Bio-Rad Laboratories, Hercules, CA, USA); 50 μg proteins were separated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to polyvinylidene difluoride membranes. The blots were blocked with Tris-buffered saline and Tween 20 containing 5% skimmed milk (Blotto; Santa Cruz Biotechnology, Santa Cruz, CA, USA) and probed with primary antibody diluted in 5% bovine serum albumin (Santa Cruz Biotechnology). The immunoblots were incubated with horseradish peroxidase secondary antibody, and antibody binding was visualized using enhanced chemiluminescence (ECL Plus Western Baricitinib Blotting Detection Reagent GE Healthcare, Little Chalfont, UK).

Data were represented as the mean ± standard error of the mean (SEM) of at least three independent experiments, performed in triplicate. Student’s t test was carried out to analyze the statistical significance between the groups using SPSS version 18.0 (SPSS, Chicago, IL, USA). A p value < 0.05 was considered statistically significant. To determine whether IR could enhance the NO-producing capability of signals of LPS, RAW264.7 cells were first irradiated with different doses of radiation (0 Gy, 2.5 Gy, 5 Gy, 10 Gy, and 20 Gy; 2.5 Gy/min) and then left without further treatment or exposed to LPS (0.1 μg/mL) for 24 h postirradiation. As shown in Fig. 1A, increased NO production was observed in irradiated cells in response to LPS at doses as low as 2.5 Gy. Meanwhile, treatment with radiation alone did not induce measurable NO production (data not shown). The maximal effect of radiation was observed at 20 Gy.

epa gov/heasd/research/sheds/user_information html/) In our aggr

epa.gov/heasd/research/sheds/user_information.html/). In our aggregate Bafilomycin A1 permethrin evaluation (Zartarian et al., 2012), permethrin contribution to DCCA and 3-PBA metabolites was ~ 50%, which is consistent with the 60% contribution of total exposure from permethrin for the general population in this cumulative pyrethroids analysis (Fig. 5a). This is also consistent with findings by Morgan et al.: the mean and 95th percentile for measured urinary 3-PBA concentrations were 0.9 and 1.9 μg/L, respectively, and the authors estimated that the

aggregate absorbed doses of permethrin accounted for about 60% of the excreted amounts of 3-PBA found in the children’s urine (Morgan et al., 2007). We used REJV data to simulate pyrethroid residential users and non-users; ~ 16% of pyrethroid residential use was simulated per REJV data, which is comparable with 13% of the participants in CTEPP-Ohio and 14% of the participants in CTEPP-North Carolina (Morgan et al., 2005). In comparison with EPA/OPP’s pyrethroids, the relevant values that can be used for comparison are the 95th and 99th percentiles of dietary exposure (with the RPF method) for 3–5 year olds 1.68E-4 and 7.1E-4 mg/kg/day (Table 5.3a from EPA OPP, 2011) versus the 95th and 99th percentiles from SHEDS-Multimedia 4.04E-5 and 6.38E-5. The difference

is comparable, but results from the OPP assessment are higher, since OPP values are for short-term exposures Palbociclib and the SHEDS-Multimedia values are annual averages. The SHEDS-Multimedia modeling of permethrin (Zartarian et al., 2012), applied a fractional absorption of permethrin based on the dermal dose-excretion study of Tomalik-Scharte et al. (2005). Here we modified our method according to Kissel (2011), who observed that in flux-limited systems (i.e., dermal studies conducted with high surface loadings) an inverse proportionality between surface loading and fractional absorption may be observed. We confirmed this observation and used this relationship to correct the fractional absorption applied by SHEDS in accordance with the estimated surface loading. The HAS1 three dermal studies informing the correction

were conducted with cypermethrin and permethrin. Here, we assumed that the physicochemical properties of these chemicals are the driver for dermal flux and reasonably representative of the other pyrethroids. The percentage of dermal contribution increased, but the new approach did not change the order by exposure pathway. Although the new method increased the fractional absorption for lower surface loadings, the impact was offset to a large degree by the actual lower surface loadings. Important shortcomings of our approach include: (1) extrapolation of our fractional absorption model to very low dermal surface loadings; (2) implicit assumption that dermal flux is comparable in children and adults; and, (3) we do not account for the effect that the pyrethroid vehicle/matrix may exert in modulating dermal absorption.

g , type and frequency of specific selection instances), critical

g., type and frequency of specific selection instances), critically determine the potency of LTM traces, which then eventually lead to the costs of selecting between competing control settings. It is a truism that interruptions of ongoing activities

harm fluent and effective performance. However, we currently do not have a full understanding of when and why exactly interruptions––an omnipresent reality in most real-world work environments––actually do have negative effects. One thing we do know is that at least after interruptions of cumulative tasks (i.e., where one needs to take off exactly where one stopped before the interruption) there is a time cost in terms of re-establishing the current task context in working memory (e.g., Altman & Trafton, 2007). The current results point to an additional factor. If our explanation Navitoclax of the cost-asymmetry is correct then every recovery from an interruption will force the system into an updating state during which it is vulnerable to alternative paths of action. Take for example a typical, complex work situation with multiple tasks that need to be performed before the day is done. These additional demands may have little effect while one is absorbed in the currently prioritized task. However, once pulled away (e.g., through the email inbox signal) the return to that task may easily go astray because

that requires crossing a Veliparib choice point during which the system is temporarily open to all alternative paths of action that are currently activated in LTM. Thus, one potential danger of interruptions may lie in increasing the number of these choice points, a hypothesis that can be tested empirically and that may have important practical consequences for how to operate in or Selleck Lonafarnib design multi-tasking environments. The current work allows two broad conclusions. First, while exogenous control of attention may be fast and effortless,

the process of intentionally adopting such a control setting produces larger behavioral costs than when adopting an endogenous control setting. Second, our pattern of results suggests that at least two things need to come together to produce interference when adopting an exogenous task setting: the presence of interfering LTM traces and an updating working memory mode, as triggered for example while recovering from an interruption. We propose that this model also provides a more general explanation of the types of costs regularly obtained in task-switching situations than the assumption of trial-to-trial carry-over between competing tasks or control settings. This research was partially supported by National Institute of Aging grant RO1 AG037564-01A1. “
“Number is one of the core competences of the human mind (Carey, 2009, Dehaene, 1997 and Dehaene and Brannon, 2011). From birth, human infants discriminate between sets on the basis of number (Feigenson et al., 2004, Izard et al.

Even residual high soil fertility and pH from agricultural use, c

Even residual high soil fertility and pH from agricultural use, conditions that favor non-native invasive plants, can be an undesirable legacy (Allison and Ausden, 2004 and Weiler et al., 2013). The restoration selleck methods discussed so far have focused on actions generally taken at the stand level with some reference to adjacent land use, but restoring ecological

processes that operate at landscape scale is a defining attribute of functional restoration. Processes that transfer energy and matter, such as hydrological flows, wildfire, hillslope processes, wind, and animal movements are the flows that shape structure and composition of landscape elements as well as their spatial patterning in a landscape mosaic Transmembrane Transproters inhibitor (Turner, 1989). Spatial patterning of patches with similar composition is important too, as these are affected by natural and socioeconomic attributes related to land ownership, tenure, and use. Clearly the landscape mosaic and its component patches are defined in the context of the way it is approached and spatial modeling is one way to understand landscape level vegetation dynamics, disturbances, and management activities such as restoration (Wimberly et al., 2012 and Shinneman et al., 2012). Landscape classification should be more detailed than simply forest/non-forest (Lindenmayer et al.,

2008), consider trade-offs among livelihoods and conservation options (Bradford and D’Amato, 2011, Boedhihartono and Sayer, 2012 and Sayer et al., 2013), and identify suitable sites for intervention, prioritizing among sites for allocating scarce resources (Lamb et al., 2012), and for guiding the monitoring design and determining success (Ruiz-Jaén and Aide, 2005b, Bestelmeyer et al., 2006 and Holl and Aide, 2011). Lindenmayer

Exoribonuclease et al., 2008 and Sayer et al., 2013 provide guidance on factors to consider in the landscape approach. The planting designs for treating an entire area can be simply spread over the entire landscape or different patches planted variously in simple and complex designs (Fig. 6, Fig. 7, Fig. 8, Fig. 9 and Fig. 10). Similarly, the approaches to transformation and conversion, including underplanting (Fig. 12) and variable retention harvests (Fig. 13 and Fig. 15), can be applied in various configurations that would result in structural and compositional diversity. Cluster afforestation (Schönenberger, 2001 and Díaz-Rodríguez et al., 2012) is a landscape design, and the planting scheme within a cluster can be varied. Buffer strips, wildlife corridors and other linear plantings (Fig. 11) can serve multiple purposes; again, the planting design within the linear strip can be varied by species and density (Bentrup et al., 2012). The design goal should be to create a diversity of vegetation types on the landscape (Lamb et al.

0005631 (3/5328), in a paternity index of 1776 (1/0 0005631) and

0005631 (3/5328), in a paternity index of 1776 (1/0.0005631) and in a probability of paternity of 99.9437%.

The DYS385 locus was excluded from the quantitative analysis in the cases with dropout (3, 17, and 18) and it did not change the number of matches in the database. There was total match between the newborn Y-STR haplotype and the Y-STR loci detected in the maternal plasma in all 20 cases with male fetuses (Table S1). Previous studies have successfully amplified Y-STR from maternal plasma by using commercial kits, howsoever, the haplotypes Bleomycin retrieved was not consistently extensive enough with 6–16 Y-STRs, 12 on median [25] or 5–12 Y-STRs, 8 on median [26] to be high discriminatory. Consequently, they would have higher frequency compared to haplotypes found in the present study, which are associated with lower paternity index and probability of paternity. The consistent obtainment of such extensive haplotypes was possible due to different reasons: (a) there were substantial

overlap between the loci included in the multiplex systems; (b) the high amplification cycle number compared to previous studies [25] and [26]; (c) the 3500 Genetic Analyzer had several significant changes from the previous 31xx generation instruments [27]; and (d) the high input of maternal plasma (1 mL) used for DNA extraction. The use of high amplification cycle number is a standard procedure in the non-invasive pre-natal AZD5363 diagnostic. Previous studies in the field have described PCR amplification step with 60–50 PCR cycles [1], [28], [29] and [30]. Nonetheless, this procedure together with the capillary electrophoresis analysis Methane monooxygenase is prone to artifacts like nonspecific amplification and color pull-up that results in drop in (see Figs. S1 and S2). Therefore, great care should be taken in the profiles interpretation (see DYS 549 locus of the Powerplex Y23 profile at Fig. S1, it was excluded from the analysis due to the allele 12 drop in, despite the allele 13

match the alleged father profile). Furthermore, the high amplification cycles number is also prone to PCR contamination; the known procedures to avoid amplicon carryover should be applied strictly. The use of only mini Y-STR, which allows the use of less amplification cycle number should eliminate this problem. Today, in our complex society, there are many situations where it would be desirable to perform the non-invasively prenatal paternity testing by the analysis of the circulating cell-free fetal DNA (e.g. ambiguous paternity in case of women with more than one sexual partner who are unsure of the actual father) [8], [31] and [32]. The fetal male lineage determination by analysis of Y-chromosome STR haplotype in maternal plasma described in this study can be use as an alternative for this purpose.

, 2007) Cre recombinase

, 2007). Cre recombinase MEK inhibitor is widely used in mouse genetics and has been intensively studied ( Glaser et al., 2005 and Van Duyne, 2001). Particularly in clinical applications, it seems to be advantageous that such recombinases, including Tre, neither produce DSBs nor require additional host factors such as the NHEJ pathway. As a result, the recombination process is very precise and usually error-free ( Glaser et al., 2005 and Van Duyne, 2001). Nevertheless, prior to clinical application various potential

problems connected with the Tre technology have to be resolved. For example, current Tre-recombinase was raised against a primary HIV-1 subtype A isolate (Blackard et al., 1999). It is therefore expected that for broader applications a Tre-recombinase also recognizing a majority of HIV-1 subtypes must be developed. Likewise, Tre treatment may select for outgrowth of resistant viruses resulting from target (loxLTR) site mutation. Both aspects may be addressed by identifying Tre target sequences that are highly conserved in the LTRs of a vast majority of HIV-1 isolates. The recent development of a novel “locus of recombination NU7441 site” search tool and the description of a collection of conserved sequences covering a maximum of HIV-1 variants will

certainly be helpful in achieving this goal (McIntyre et al., 2009 and Surendranath et al., 2010). Even if it turns out that a sterilizing cure cannot be achieved, Tre technology may also be applicable in a functional cure for ex vivo treatment of PBMCs. For this, Tre-recombinase could be expressed as a fusion with a cell-penetrating protein transduction domain (PTD) or membrane translocation motif (TLM) ( Fonseca et al., 2009). As reported recently, directly adding recombinant PTD/TLM-Tre fusion protein to a productively

infected T cell culture resulted in efficient protein translocation and excision of the full-length HIV-1 proviral Etomidate DNAs from their chromosomal integration sites ( Mariyanna et al., 2012). The growing recognition that a cure for HIV infection is not only needed but also feasible is based on significant advances in basic, translational, and clinical research (Deeks et al., 2012). The remarkable case of the “Berlin patient” particularly revived the idea of gene therapy strategies to eradicate HIV (Kiem et al., 2012 and van Lunzen et al., 2011). Indeed, expression of in vitro engineered enzymes disrupting the CCR5 surface receptor and/or excising the HIV-1 proviral DNA may become critical components of future therapies aiming at virus eradication. It is generally expected that, if achievable at all, no single approach will lead to a sterilizing cure. Rather, a clever combination of drug treatments, therapeutic vaccination strategies, possibly in combination with antiviral gene therapy, likely offers the highest hope for defeating HIV.

There was a significant main effect of grade (Wald χ2 = 12 9, p <

There was a significant main effect of grade (Wald χ2 = 12.9, p < 0.001), but no difference between tasks (p = 0.9) and no interaction between grade and task (Wald χ2 = 1.4, p = 0.24), suggesting the grade effects were not specific to recursion ( Fig. 7). To assure the validity of comparisons between

VRT and EIT, we balanced the order of the tasks in the procedure. However, we noticed that one of the ‘task-order’ conditions yielded lower performance than the other. Specifically, participants starting the procedure with VRT had a significantly lower response accuracy (on both tasks VRT and EIT combined; M = 0.63, SD = 0.21) than participants that selleck chemicals started with EIT (M = 0.72, SD = 0.17; Mann Whitney U = 851, z = −3.2, p = 0.001). To further explore

this, we first investigated whether performance was differently affected in different tasks and in different grades ( Fig. 8). Before testing the effect of task-order, and to better interpret potential interactions between ‘task-order’ (‘VRT-EIT’ vs. ‘EIT-VRT’) and ‘task’ (VRT vs. EIT), we recoded the former variable on a trial-by-trial basis. The new variable, called ‘position’, can be understood as the position of the task in the procedure. For instance, in trials where the task is ‘VRT’ and the order of tasks is ‘VRT-EIT’, the ‘position’ variable is coded as ‘FIRST’. Likewise, in trials where the task is ‘EIT’ and the Cilengitide purchase order of tasks is ‘EIT-VRT’, the ‘position’ variable is coded as ‘FIRST’, etc. We ran a GEE model with ‘task’ (VRT vs. EIT) and position (FIRST vs. SECOND) as within-subjects effects, and ‘grade’ (second vs. fourth) as a between-subjects variable. We analyzed ‘task’, ‘grade’ and ‘position’ main effects, and all possible interactions. The summary Oxalosuccinic acid of the model

is depicted in Table 1. We found significant main effects of ‘position’ and ‘grade’ on performance (p < 0.001), in agreement with the previous analyses. Furthermore, we found a significant interaction between ‘task’ and ‘position’. Performance in EIT-FIRST position was better than performance in VRT-FIRST position (EMM difference = 0.15, p = 0.004). Conversely, VRT-SECOND position yielded better performance than EIT-SECOND position (EMM difference = 0.17, p = 0.001). Within VRT, the proportion of correct answers was higher when this task was performed in the SECOND position of the procedure than when the same task was performed in the first position (EMM difference = 0.21, p < 0.001). Within EIT, there was also a trend towards higher accuracy when this task was performed in the FIRST position than when it was performed in the second position (EMM difference = 0.11, p = 0.052). All p-values were corrected with sequential Bonferroni. Additional interaction analyses are presented in Appendix E. Overall, results suggest that the order of the task in the procedure had a strong influence on task performance.

6–14 to 6–17) Pollen diagrams for cores I through IV cover all o

6–14 to 6–17). Pollen diagrams for cores I through IV cover all or part of the timespan discussed in this article. Being the only ones in either Puebla or Tlaxcala that clearly reach into the historical era, they are of potential relevance, unfulfilled because their chronometric control is limited to two radiocarbon dates. Maize is present throughout their depth, in frequencies so high that lakeshore agriculture can be taken for granted. The presence of Eucalyptus at depths of up to 430 cm makes me suspect that much of the diagrams and the deposition belongs to the 20th C., when this Australian tree was widely used in reforesting dynamited or bulldozed tepetates.

Documentary references to click here rapid sedimentation in the wetlands can be found for almost any period. But, in these strongly depositional environments, it is the relative rate of sedimentation that matters, and this we know little about. In sum, the scarcity of positively identified alluvium later than the Early Postclassic check details seems incommensurate with the amount of historical erosion inferred by fieldwork on slopes. If

this pattern holds, two hypotheses may explain it. One is that the sediment is still largely stored on slopes, and that terracing, despite its repeated failure, has decreased the connectivity of slopes and valleys. The other is that historical streams became overfit to such a degree that they exported most sediment to southern Tlaxcala or beyond. There are many potential caveats. Along some reaches, historical alluvium may lie buried under the active floodplains. Alluvial records are fragmentary, and quantitative estimates of historical sediment transfers nearly impossible in open-ended systems. Lakes may offer a partial solution, but in Tlaxcala they have been drained or flooded by reservoirs, and their topmost sediments disturbed in

a myriad ways. Chronology is the Achilles’ heel of most arguments presented above. The problems are both methodological and theoretical. In Tlaxcala nobody has committed resources to the radiometric dating of Postclassic and later deposits. Periodizations based on styles of material culture are coarse for the Postclassic, and virtually non-existent for the historical era. The theoretical challenge is to arrive at explanations Glutamate dehydrogenase that integrate cultural and environmental processes operating on different timescales. Readers familiar with the terminology of Fernand Braudel (1987) will recognize in rows A–Y of Table 2 his conjonctures, while rows X–Z may be eligible for the status of structures. The insight from Tlaxcala is that, in geologically young tropical landscapes, ‘geological’ change is measurable on timescales of a human lifespan. Therefore, instead of being relegated to the longue durée, it can be used to index certain economic or social conjunctures.