“Attentional deficits are a core symptom of schizophrenia


“Attentional deficits are a core symptom of schizophrenia. Post-mortem analyses of the brains of schizophrenics reveal

consistent abnormalities in gamma-aminobutyric acid (GABA) interneurons indicative of reduced cortical GABA transmission, raising the possibility that this BAY 1895344 supplier pathology contributes to attentional deficits. We examined whether blockade of prefrontal cortex (PFC) GABA(A) receptors with bicuculline (BMI) impairs attention in rats using the 5-choice serial reaction time task (5CSRTT). For comparison, we also examined whether administration of the GABA(A) receptor agonist muscimol (MUS) would improve attention. In parallel, we examined the effects of both manipulations on activity in an open field and on motivation using the intracranial self-stimulation (ICSS) test. BMI increased PFC neuronal activity, as reflected by increased Fos immunolabeling, and impaired attention, as reflected by

decreased accuracy and increased omissions. Although increased omissions also may reflect reductions in locomotor activity or motivation, the overall pattern of effects does not support either of these interpretations: BMI did not affect locomotor activity, and it enhanced motivation in the ICSS test. MUS did not affect attention, although it increased impulsive behavior at a dose that suppressed PFC neuronal activity, as reflected by decreased Fos immunolabeling. These impulsivity effects are not due to altered locomotor activity (which was decreased) or motivation (which was not affected). Our data support the hypothesis that cortical GABA neurons Etomoxir manufacturer have an important role in regulating attention and may have direct implications ever for the treatment of schizophrenia. Neuropsychopharmacology (2011) 36, 1703-1713; doi:10.1038/npp.2011.51; published online 13 April 2011″
“The importance of the 2′-5′ oligoadenylate synthetase (OAS)/RNase L and double-stranded RNA (dsRNA)-dependent protein kinase (PKR) pathways in host interferon induction resulting from virus infection in response to dsRNA has been well documented. In poxvirus

infections, the interactions between the vaccinia virus (VV) genes E3L and K3L, which target RNase L and PKR, respectively, serve to prevent the induction of the dsRNA-dependent induced interferon response in cell culture. To determine the importance of these host genes in controlling VV infections, mouse single-gene knockouts of RNase L and PKR and double-knockout mice were studied following intratracheal infection with VV, VV Delta K3L, or VV Delta E3L. VV caused lethal disease in all mouse strains. The single-knockout animals were more susceptible than wild-type animals, while the RNase L(-/-) PKR(-/-) mice were the most susceptible. VV Delta E3L infections of wild-type mice were asymptomatic, demonstrating that E3L plays a critical role in controlling the host immune response. RNase L(-/-) mice showed no disease, whereas 20% of the PKR(-/-) mice succumbed at a dose of 10(8) PFU.

Comments are closed.