In both, the recognition of pathogen-associated molecular patterns (PAMPs) by Toll receptors (insects) and Toll-like receptors (mammals) results in the production of antimicrobial peptides [23]. Furthermore, insect hemocytes and mammalian neutrophils can both engulf and kill most invading microorganisms [24]. Insects are also afforded protection from microorganisms through the coagulation and melanization of hemolymph, but they do not have an adaptive
immune system. In addition to biological similarities, several logistical issues contribute to the recent adoption of insects as alternative hosts for bacterial pathogens. Insects can be readily obtained, housed, and cared for at considerable cost savings compared to mammals. Moreover, the use of insects is not governed by animal use regulations or committees {Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleck Anti-cancer Compound Library|Selleck Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Selleckchem Anti-cancer Compound Library|Selleckchem Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|Anti-cancer Compound Library|Anticancer Compound Library|buy Anti-cancer Compound Library|Anti-cancer Compound Library ic50|Anti-cancer Compound Library price|Anti-cancer Compound Library cost|Anti-cancer Compound Library solubility dmso|Anti-cancer Compound Library purchase|Anti-cancer Compound Library manufacturer|Anti-cancer Compound Library research buy|Anti-cancer Compound Library order|Anti-cancer Compound Library mouse|Anti-cancer Compound Library chemical structure|Anti-cancer Compound Library mw|Anti-cancer Compound Library molecular weight|Anti-cancer Compound Library datasheet|Anti-cancer Compound Library supplier|Anti-cancer Compound Library in vitro|Anti-cancer Compound Library cell line|Anti-cancer Compound Library concentration|Anti-cancer Compound Library nmr|Anti-cancer Compound Library in vivo|Anti-cancer Compound Library clinical trial|Anti-cancer Compound Library cell assay|Anti-cancer Compound Library screening|Anti-cancer Compound Library high throughput|buy Anticancer Compound Library|Anticancer Compound Library ic50|Anticancer Compound Library price|Anticancer Compound Library cost|Anticancer Compound Library solubility dmso|Anticancer Compound Library purchase|Anticancer Compound Library manufacturer|Anticancer Compound Library research buy|Anticancer Compound Library order|Anticancer Compound Library chemical structure|Anticancer Compound Library datasheet|Anticancer Compound Library supplier|Anticancer Compound Library in vitro|Anticancer Compound Library cell line|Anticancer Compound Library concentration|Anticancer Compound Library clinical trial|Anticancer Compound Library cell assay|Anticancer Compound Library screening|Anticancer Compound Library high throughput|Anti-cancer Compound high throughput screening| and even very large-scale experiments using insects are considered ethically acceptable. As a possible insect alternative to mammalian models of infection, we tested several B. pseudomallei, B. mallei, and B. thailandensis strains against juvenile Madagascar hissing cockroaches (MH cockroaches) obtained from a commercial vendor (Carolina Biological Supply Company). MH cockroaches are readily available, easily cultured, and reproduce rapidly. They are larger than wax moth larvae, slow moving compared to other species of cockroaches, and have a substantive carapace. These characteristics make them easier to manipulate
and inoculate with known numbers of bacteria compared with other species of insects commonly used for similar Racecadotril Etomoxir studies. MH cockroaches thrive at Batimastat cell line 37°C, a characteristic that is essential for the analysis of mammalian pathogens. In this study, we found the MH cockroach to be a suitable surrogate host for B. pseudomallei, B. mallei, and B. thailandensis. Burkholderia type VI secretion system mutants were attenuated in MH cockroaches, which is consistent with what is seen in rodent models of infection [9, 25]. B. pseudomallei multiplied inside MH cockroach hemocytes and may be the primary mechanism by which this pathogen avoids elimination by the MH cockroach innate immune system. The results suggest that MH cockroaches are a good
alternative to mammals for the study of Burkholderia species and possibly other mammalian pathogens. Results and discussion B. pseudomallei is virulent in the MH cockroach and T6SS-1 mutants exhibit attenuated virulence In an attempt to determine if the MH cockroach might serve as a surrogate host for B. pseudomallei, we challenged juvenile MH cockroaches (Figure 1) with K96243 and T6SS mutant derivatives. T6SS-1 is a critical virulence determinant for B. pseudomallei in the hamster model of infection [9], while T6SS-2, T6SS-3, T6SS-4, T6SS-5, and T6SS-6 are dispensable for virulence in hamsters. Groups of eight MH cockroaches were challenged by the intra-abdominal route with 101-105 bacteria and deaths were recorded for 5 days at 37°C (Figure 2).