Methylation analysis showed the presence of derivatives of termin

Methylation analysis showed the presence of derivatives of terminal Galp, terminal Manp, 2-substituted Manp, 3-substituted Manp, 6-substituted Selonsertib clinical trial Manp, and 2,6-substituted Manp. On the basis of chemical data it could be hypothesised that the structure consisted of a mannan

backbone to which other mannose (and some galactose) branching residues were attached. The 1H-NMR and 13C NMR spectra appeared rather complex (Figure 3). Figure 3 The 1 H- (A) and the 13 C-NMR spectra from the purified EPS of H. somni 2336. The spectrum was recorded in D2O at 25°C, relative to the HOD signal at 4.78 ppm. Chemical shifts were assigned utilizing DQF-COSY, TOCSY, ROESY, HSQC, and HMBC experiments (Table 2). Anomeric configurations

were assigned on the basis of the chemical shifts of the 3 J H-1, H-2 values, which were determined from the DQF-COSY experiment, and from the shifts of 1 J C-1, H-1 values derived from a coupled 1H,13C-HSQC. Based on the TOCSY https://www.selleckchem.com/products/tpx-0005.html spectrum from the H-2 proton signal for all the spin systems, it was possible to assign all of the resonances, and from these, all the 13C resonances from the HSQC spectrum. Table 2 1H and 13C NMR data of the galactomannan fraction from Histophilus somni 2336 Residue 1 2 3 4 5 6 2-Manp 5.28 4.10 3.91 3.72 3.71 3.87, 3.72   101.2 79.3 71.0 67.4 75.4 61.8 selleck chemicals 3-Manp 5.16 4.21 3.88 3.65 3.76 3.89, 3.74   103.2 71.1 79.1 66.0 75.3 62.0 2,6-Manp 5.13 4.22 3.87 3.60 3.76 3.88, 3.73   99.2 79.1 71.1 66.1 74.6 68.0 2,6-Manp 5.10 4.03 3.93 3.69 3.80 4.00, 3.70   99.2 79.6 71.5 67.8 74.6 67.6 t-Manp 5.03 4.06 3.86 3.66 3.75 3.89, 3.71   103.2 71.0 71.2 67.5 76.4 62.1 t-Manp 5.04 4.20 3.93 3.62 3.86 3.89, 3.71   103.2 70.1 70.7 67.9 76.4 62.1 6-Manp 4.89 3.98 3.82 3.71 3.88 3.91, 3.73   100.6 70.6 71.0 67.3 74.8 66.5 t-Galp 4.52 3.32 3.48 3.87 3.84 3.84,

4.21 In the low field anomeric region several signals were present, all identifiable as mannose spin systems (low 3 J H-1, H-2 Farnesyltransferase and 3 J H-2, H-3 values) experiencing a different magnetic environment. At 5.28 ppm a cluster of signals were present, all indicative of 2-substituted mannose residues. In fact, 13C resonance assignments showed the downfield displacement of a C-2 resonance for the spin system, evidently due to glycosylation. Furthermore, at 5.16 ppm a cluster of signals indicated that a 3-substituted mannose was present, as attested by the downfield shift of C-3 resonance at 79.1 ppm.

Comments are closed.