Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly Bindarit mouse processes. We here study the
structural effects of engineered ionizable residues in the core of the glutathione-S-transferase to convert this protein into a pH-dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein’s affinity to bind glutathione. Whereas Volasertib the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH-dependent GSH-binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic
core to produce conformational changes that influence the protein’s active site. The methodology described here to create and characterize engineered allosteric proteins Dichloromethane dehalogenase through affinity chromatography may lead to a general approach to engineer effector-specific allostery into a protein structure.”
“Metabolism of thyroid hormones
by the type 2 and type 3 iodothyronine deiodinases (D2, D3) in T3-responsive target cells is a sophisticated mechanism that helps to maintain local T3 concentrations and facilitates T3 action in a cell-specific manner that is independent of circulating thyroid hormone concentrations. Recent findings have demonstrated an essential physiological role for the thyroid hormone-activating enzyme D2 in the optimization of bone mineralization and strength. Emerging population studies have also identified the genes encoding D2 and the thyroid hormone-inactivating enzyme D3 as susceptibility loci for osteoarthritis. These new data reveal an essential role for the local control of T3 availability in osteoblasts and chondrocytes during maintenance and repair of bone and cartilage.”
“Respiratory syncytial virus (RSV) is the most important cause of severe, lower respiratory tract infections in infants, and RSV infections have been associated with chronic wheezing and asthma during childhood. However, the mechanism of RSV-induced airway inflammation and airway hyperresponsiveness (AHR) is poorly understood.