The obvious diversity of MI curves has been apparently observed i

The obvious diversity of MI curves has been apparently observed in (100)- and (002)-textured nanobrushes. Micromagnetic simulation is used to analyze the phenomenon. Methods Figure  1 shows the preparation of the heterogeneous nanobrush with different textures based on AAO templates and magnetron sputtering. Self-ordered anodic aluminum oxide templates were prepared by a two-step anodization process [25]. As shown in Figure  1a, the 20- and 50-nm AAO templates were

prepared by two-step anodization in sulfuric acid and GSK3326595 oxalic acid solutions, respectively. The Co nanowires were deposited by alternating current electrodeposition. The formation of textures is very sensitive to the pH value and temperature. The saturated NaHCO3 solution was added dropwise to regulate the pH value, and the water bath was used

to control the deposition temperature (Figure  1b). For the 50-nm AAO templates, the (100) texture was deposited when pH = 6.2 selleck inhibitor and the water bath was 60°C, and the (100), (002), and (101) mixed textures were deposited when pH = 4.5 and the water bath was 20°C. For the 20-nm templates, (100), (002), and selleck screening library (100) and (002) mixed textures were deposited under 40°C, pH = 4.5; 20°C, pH = 6.4; and 10°C, pH = 6.4, respectively. Once collected, a 100-nm-thick Fe25Ni75 film was sputtered on the surface of AAO templates with a common base pressure below 3 × 10-5 Pa and a processing Ar pressure of 0.4 Pa (Figure  1c). The RF power was 140 W, and the duration of deposition was 30 min. Moreover, the FeNi film would have Sulfite dehydrogenase to

cover the top of the AAO template, and the surface of the sample was conductive. Figure 1 Preparation of the heterogeneous nanobrush with different textures. (a) A regular AAO template was achieved via two-step oxidation, (b) electrochemical deposition textured cobalt nanowires by regulating pH values and proper water bath, and (c) FeNi film covered the surface by magnetron sputtering. X-ray diffraction (XRD) confirmed the composition of the nanowire arrays. The surface topography and nanostructure were observed via scanning electron microscopy (SEM). The magneto-optic Kerr effect (MOKE) was used to obtain the surface magnetic properties of the composite material. Micromagnetic simulations were performed with the three-dimensional (3D) object-oriented micromagnetic framework (OOMMF) method [8]. The exchange constants of the film and wires, respectively, were 1.3 × 10-11 and 1.75 × 10-11 J/m. The damping parameter α was 0.5, the mesh size was 5 × 5 × 5 nm3, and the saturation magnetization of the permalloy film and Co nanowires, respectively, were 8.6 × 105 and 1.42 × 106 A/m. Prior to MI measurement, the samples were tailored into small pieces with a length of 20 mm and width of 3 mm. An impedance analyzer (Agilent 4294A, Agilent Technologies, Inc., Santa Clara, CA, USA) was used in the four-terminal contact mode to measure the impedance (Z).

Comments are closed.